Advances in Social Behavior Research

Advances in Social Behavior Research

ASBR ICEIPI 2022, 03 March 2023

Open Access | Article

Evaluation of Pathological Perspectives Related to Alzheimer’s Disease

Qingyang Song * 1
1 Catholic Memorial, Boston, 02132, United States

* Author to whom correspondence should be addressed.

Advances in Social Behavior Research, ASBR ICEIPI 2022, 583-589
Published 03 March 2023. © 2023 The Author(s). Published by EWA Publishing
This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Citation Qingyang Song. Evaluation of Pathological Perspectives Related to Alzheimer’s Disease. ASBR (2023) ASBR ICEIPI 2022: 583-589.


Alzheimer’s disease (AD), one of the degenerative diseases and dementias, caused more than millions of people to suffer from it. Over the past few decades, scientists have been putting much effort to study this particular disease in the hope of finding the drug to cure AD. In this condition, two significant hallmarks were discovered, senile plaques and neurofibrillary tangles (NFTs), furthermore leads scientists to focus on Aβ and tau protein to study the pathogenesis of AD. However, the real culprit contributing to AD still remains unknown. Although many amyloid-targeted drugs and tau-targeted drugs are developed, they all failed, causing scientists to cast doubt on the amyloid-related perspective and tau-related perspective. This article will mainly discuss the amyloid hypothesis and the tau hypothesis, the factors driving the formation of senile plaques and NFTs, the scientific data supporting and opposing these two perspectives, the criticisms they are facing, and most importantly the future orientation for scientists to study. Here, after understanding the amyloid-related perspective, tau-related perspective, and other perspectives proposed for AD, we extrapolate that the pathogenesis of AD is multifactorial; moreover, the future AD study should take multiple factors into account.


senile plaque, tau protien, Aβ, NFT., APP, Alzheimer’s disease


1. Gauthier, S., Rosa-Neto, P., Morais, J. A., & Webster, C. (2021). World Alzheimer Report 2021: Journey through the diagnosis of dementia. Alzheimer’s Disease International.

2. Selkoe, D. J., & Hardy, J. (2016). The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Molecular Medicine, 8(6), 595–608.

3. Mohandas, E., Rajmohan, V., & Raghunath, B. (2009). Neurobiology of Alzheimer's disease. Indian journal of psychiatry, 51(1), 55–61.

4. Chen, G. F., Xu, T. H., Yan, Y., Zhou, Y. R., Jiang, Y., Melcher, K., & Xu, H. E. (2017). Amyloid beta: structure, biology and structure-based therapeutic development. Acta Pharmacologica Sinica, 38(9), 1205–1235.

5. O’Brien, R. J., & Wong, P. C. (2011). Amyloid Precursor Protein Processing and Alzheimer’s Disease. Annual Review of Neuroscience, 34(1), 185–204.

6. Lee, C. Y. D., & Landreth, G. E. (2010). The role of microglia in amyloid clearance from the AD brain. Journal of Neural Transmission, 117(8), 949–960.

7. Kametani, F., & Hasegawa, M. (2018). Reconsideration of Amyloid Hypothesis and Tau Hypothesis in Alzheimer’s Disease. Frontiers in Neuroscience, 12.

8. Hansen, D. V., Hanson, J. E., & Sheng, M. (2017). Microglia in Alzheimer’s disease. Journal of Cell Biology, 217(2), 459–472.

9. SELKOE, D. J. (2006). Toward a Comprehensive Theory for Alzheimer’s Disease. Hypothesis: Alzheimer’s Disease Is Caused by the Cerebral Accumulation and Cytotoxicity of Amyloid β-Protein. Annals of the New York Academy of Sciences, 924(1), 17–25.

10. Chávez -Gutiérrez, L., Bammens, L., Benilova, I., Vandersteen, A., Benurwar, M., Borgers, M., Lismont, S., Zhou, L., van Cleynenbreugel, S., Esselmann, H., Wiltfang, J., Serneels, L., Karran, E., Gijsen, H., Schymkowitz, J., Rousseau, F., Broersen, K., & de Strooper, B. (2012). The mechanism of γ-Secretase dysfunction in familial Alzheimer disease. The EMBO Journal, 31(10), 2261–2274.

11. Wu, L., Rosa-Neto, P., Hsiung, G. Y. R., Sadovnick, A. D., Masellis, M., Black, S. E., Jia, J., & Gauthier, S. (2012). Early-Onset Familial Alzheimer’s Disease (EOFAD). Canadian Journal of Neurological Sciences / Journal Canadien Des Sciences Neurologiques, 39(4), 436–445.

12. Kamenetz, F., Tomita, T., Hsieh, H., Seabrook, G., Borchelt, D., Iwatsubo, T., Sisodia, S., & Malinow, R. (2003). APP Processing and Synaptic Function. Neuron, 37(6), 925–937. 6273(03)00124-7

13. Näslund, J. (2000). Correlation Between Elevated Levels of Amyloid β-Peptide in the Brain and Cognitive Decline. JAMA, 283(12), 1571.

14. Paglini, G., Peris, L., Mascotti, F., Quiroga, S., & Caceres, A. (2000). Tau Protein Function in Axonal Formation. Neurochemical Research, 25(1), 37–42.

15. Mitchison, T., & Kirschner, M. (1988). Cytoskeletal dynamics and nerve growth. Neuron, 1(9), 761–772.

16. Grundke-Iqbal, I., Iqbal, K., Quinlan, M., Tung, Y. C., Zaidi, M. S., & Wisniewski, H. M. (1986). Microtubule- associated protein tau. A component of Alzheimer paired helical filaments. Journal of Biological Chemistry, 261(13), 6084–6089.

17. Mandelkow, E. M. (1995). Hyperphosphorylation of tau in PHF. Neurobiology of Aging, 16(3), 374.

18. Medeiros, R., Baglietto-Vargas, D., & LaFerla, F. M. (2010). The Role of Tau in Alzheimer’s Disease and Related Disorders. CNS Neuroscience & Therapeutics, 17(5), 514–524. 5949.2010.00177.x

19. Liu, L., Drouet, V., Wu, J. W., Witter, M. P., Small, S. A., Clelland, C., & Duff, K. (2012). Trans-Synaptic Spread of Tau Pathology In Vivo. PLoS ONE, 7(2), e31302.

20. Lee, V. M. Y., Goedert, M., & Trojanowski, J. Q. (2001). Neurodegenerative Tauopathies. Annual Review of Neuroscience, 24(1), 1121–1159.

21. Buée, L., Bussière, T., Buée -Scherrer, V., Delacourte, A., & Hof, P. R. (2000). Tau protein isoforms, phosphorylation and role in neurodegenerative disorders11These authors contributed equally to this work. Brain Research Reviews, 33(1), 95–130.

22. Spillantini, M. G., Bird, T. D., & Ghetti, B. (2006). Frontotemporal Dementia and Parkinsonism Linked to Chromosome 17: A New Group of Tauopathies. Brain Pathology, 8(2), 387–402. 3639.1998.tb00162.x

23. Geschwind, D. H. (2003). Tau Phosphorylation, Tangles, and Neurodegeneration. Neuron, 40(3), 457–460.

24. Fath, T., Eidenmüller, J., & Brandt, R. (2002). Tau -Mediated Cytotoxicity in a Pseudohyperphosphorylation Model of Alzheimer’s Disease. The Journal of Neuroscience, 22(22), 9733–9741.

25. Ittner, A., Chua, S. W., Bertz, J., Volkerling, A., van der Hoven, J., Gladbach, A., Przybyla, M., Bi, M., van Hummel, A., Stevens, C. H., Ippati, S., Suh, L. S., Macmillan, A., Sutherland, G., Kril, J. J., Silva, A. P. G., Mackay, J. P., Poljak, A., Delerue, F., . . . Ittner, L. M. (2016). Site-specific phosphorylation of tau inhibits amyloid-β toxicity in Alzheimer’s mice. Science, 354(6314), 904–908.

26. Melov, S., Adlard, P. A., Morten, K., Johnson, F., Golden, T. R., Hinerfeld, D., Schilling, B., Mavros, C., Masters, C. L., Volitakis, I., Li, Q. X., Laughton, K., Hubbard, A., Cherny, R. A., Gibson, B., & Bush, A. I. (2007). Mitochondrial Oxidative Stress Causes Hyperphosphorylation of Tau. PLoS ONE, 2(6), e536.

27. Busciglio, J., Lorenzo, A., Yeh, J., & Yankner, B. A. (1995). β-Amyloid fibrils induce tau phosphorylation and loss of microtubule binding. Neuron, 14(4), 879–888.

28. Sun, X. Y., Wei, Y. P., Xiong, Y., Wang, X. C., Xie, A. J., Wang, X. L., Yang, Y., Wang, Q., Lu, Y. M., Liu, R., & Wang, J. Z. (2012). Synaptic Released Zinc Promotes Tau Hyperphosphorylation by Inhibition of Protein Phosphatase 2A (PP2A). Journal of Biological Chemistry, 287(14), 11174–11182.

29. Garwood, C. J., Pooler, A. M., Atherton, J., Hanger, D. P., & Noble, W. (2011). Astrocytes are important mediators of Aβ-induced neurotoxicity and tau phosphorylation in primary culture. Cell Death & Disease, 2(6), e167.

30. Rosenmann, H., Blum, D., Kayed, R., & Ittner, L. M. (2012). Tau Protein: Function and Pathology. International Journal of Alzheimer’s Disease, 2012, 1–2.

31. Makin, S. (2018). The amyloid hypothesis on trial. Nature, 559(7715), S4–S7. 018-05719-4

32. Modrego, P., & Lobo, A. (2019). A good marker does not mean a good target for clinical trials in Alzheimer’s disease: the amyloid hypothesis questioned. Neurodegenerative Disease Management, 9(3), 119–121.

33. Fagan, A. M., Xiong, C., Jasielec, M. S., Bateman, R. J., Goate, A. M., Benzinger, T. L. S., Ghetti, B., Martins, R. N., Masters, C. L., Mayeux, R., Ringman, J. M., Rossor, M. N., Salloway, S., Schofield, P. R., Sperling, R. A., Marcus, D., Cairns, N. J., Buckles, V. D., Ladenson, J. H., . . . Holtzman, D. M. (2014). Longitudinal Change in CSF Biomarkers in Autosomal-Dominant Alzheimer’s Disease. Science Translational Medicine, 6(226).

34. Castello, M. A., & Soriano, S. (2014). On the origin of Alzheimer’s disease. Trials and tribulations of the amyloid hypothesis. Ageing Research Reviews, 13, 10–12.

35. Sturchio, A., Dwivedi, A. K., Young, C. B., Malm, T., Marsili, L., Sharma, J. S., Mahajan, A., Hill, E. J., Andaloussi, S. E., Poston, K. L., Manfredsson, F. P., Schneider, L. S., Ezzat, K., & Espay, A. J. (2021). High cerebrospinal amyloid-β 42 is associated with normal cognition in individuals with brain amyloidosis. EClinicalMedicine, 38, 100988.

36. Davis, D. G., Schmitt, F. A., Wekstein, D. R., & Markesbery, W. R. (1999). Alzheimer Neuropathologic Alterations in Aged Cognitively Normal Subjects. Journal of Neuropathology and Experimental Neurology, 58(4), 376–388.

37. Gómez -Isla, T., Hollister, R., West, H., Mui, S., Growdon, J. H., Petersen, R. C., Parisi, J. E., & Hyman, B. T. (1997). Neuronal loss correlates with but exceeds neurofibrillary tangles in Alzheimer’s disease. Annals of Neurology, 41(1), 17–24.

38. 41.Sevigny, J., Chiao, P., Bussière, T., Weinreb, P. H., Williams, L., Maier, M., Dunstan, R., Salloway, S., Chen, T., Ling, Y., O’Gorman, J., Qian, F., Arastu, M., Li, M., Chollate, S., Brennan, M. S., Quintero-Monzon, O., Scannevin, R. H., Arnold, H. M., . . . Sandrock, A. (2016). The antibody aducanumab reduces Aβ plaques in Alzheimer’s disease. Nature, 537(7618), 50–56.

39. Lovestone, S., Boada, M., Dubois, B., Hüll, M., Rinne, J. O., Huppertz, H. J., Calero, M., Andrés, M. V., Gómez - Carrillo, B., León, T., & del Ser, T. (2015). A Phase II Trial of Tideglusib in Alzheimer’s Disease. Journal of Alzheimer’s Disease, 45(1), 75–88.

40. Lin, L., Huang, Q. X., Yang, S. S., Chu, J., Wang, J. Z., & Tian, Q. (2013). Melatonin in Alzheimer’s Disease. International Journal of Molecular Sciences, 14(7), 14575–14593.

Data Availability

The datasets used and/or analyzed during the current study will be available from the authors upon reasonable request.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. Authors who publish this journal agree to the following terms:

1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.

2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.

3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See Open Access Instruction).

Copyright © 2023 EWA Publishing. Unless Otherwise Stated